
M-API User’s Guide, Version 2.1 SDST-064A

January 23, 1997 4-1

4. USING M-API

This section explains the use of M-API to access arrays, tables, metadata.  The user
should refer to Section 6 for a discussion of the example programs included in the M-
API distribution.  In the following text the M-API routines names are from the C
reference followed by the FORTRAN in parentheses, [i.e., openMODISfile
(OPMFIL)].

4.1 Preparation

In order for M-API to be available for development programs the user will need to have
his operating environment or makefiles reflect the locations of the M-API include files
and the appropriate library.  This being done, the following algorithm will serve as a
starting point.  In the following sections the put and get in bold refer to using the put or
get function for the appropriate data object (arrays, groups, tables).

Step 1 Open the file using openMODISfile (OPMFIL)
Step 1a (Prepare data) see below
Step 2 get/put data see below
Step 3 Close the file using closeMODISfile (CLMFIL)

(Use a call to completeMODISfile (CPMFIL) instead when
a NEW file has been created.)

Step 4 on error (or not) check the LogStatus file designated in the job’s Process Control
Files (PCF).

This is an oversimplification but it provides a high-level view of M-API use in an
application program. The next sections will deal with Steps 2a and 2,
preparing/getting/putting data to/from the MODIS file.

The first step in writing an array to a file is to create a new file or open an existing file
for read/write access  (using openMODISfile [OPMFIL]).  The 'modfil' variable (C
structure or FORTRAN array) returned by this routine is used to identify the file for all
subsequent access operations.

In the last step the file must be closed after all access is completed and prior to
program termination using completeMODISfile (CPMFIL) [for a new MODIS file] or
closeMODISfile (CLMFIL) [for a pre-existing file].  Some data may not be written to
the file until this routine is performed.

4.2 Data Groups

Data groups are synonymous with HDF Vgroups.  A Vgroup in HDF is defined as “a
structure designed to associate related objects” (HDF User’s Guide, NCSA, 4/17/96).

4.2.1 Introduction to Data Groups (Vgroups)

Vgroups can be conceptualized as being similar to directories (or folders) on a
computer file system.  They provide a convenient way of associating disparate data



M-API User’s Guide, Version 2.1 SDST-064A

January 23, 1997 4-2

types, or data objects, even other Vgroups.  In general Vgroups have two attributes
that can be used for searching and classifying them: name and class.  The Vgroup
name is a character string that describes and references a particular data group.  The
Vgroup class is also a character string that further classifies and describes the data
group.  In M-API the class string can be written into the file with put, but is ignored
otherwise.  

4.2.2 Using Data Groups

Step 1a call createMODISgroup (CRMGRP)

M-API provides a function for creating a new data group createMODISgroup
(CRMGRP).  This function should be called prior to the creation of related data
objects.  Then the appropriate function call to put the array or table will place the data
in the file in that particular data group (see the following section on how to put data in
to a MODIS file).  For existing files, arrays and tables can be retrieved from a particular
group with the appropriate call to get the particular data object.  For cases where no
group exists, simply set the grpnam variable to ‘\0’.  Example 2 in Section 6.2 shows
how to call createMODISgroup.  Example 2a in Section 6.3 shows how to get data
from a particular group.

4.3 Accessing Arrays

Nearly all MODIS products at L1 and L2 will make extensive use of multi-dimensional
arrays for storing data.  HDF supports arrays with a wide range of data types and sizes,
and M-API offers considerable flexibility in defining, writing, and reading arrays.  The
following sections provide a general introduction to the use of arrays with the M-API
and give specific usage and examples for accessing arrays.  

4.3.1 Introduction to Arrays

Arrays are multi-dimensional, numerical data objects which are the same data type
stored within HDF files.  In HDF nomenclature, an array is referred to as SDS.  A given
file can store a large number of individual arrays, although as a general guideline the
total number of data objects in a file should not exceed 100.  Each array can be
defined, written, and read independently of other arrays and data objects in a file. An
array can store variables of any M-API supported data type except character string.

The essential elements of an array are as follows:  

• Name - This is a character string which is used in all of the M-API array routines to
designate the particular object.  The name is stored in the file and can also be used
by standard HDF tools to access the array.  

• Data Type - Supported data types are signed and unsigned 8-bit, 16-bit, and 32-bit
integers; 32-bit and 64-bit floating point.



M-API User’s Guide, Version 2.1 SDST-064A

January 23, 1997 4-3

• Rank - The number of dimensions for the array. A linear array has a rank of 1, a
rectangular ("flat") array has a rank of 2, a cube has a rank of 3, and so on.  HDF
supports arrays with ranks as high as 32 dimensions, but use of higher-
dimensional arrays should be considered carefully since they can be confusing to
data users; if one of the dimensions is small it may be preferable to generate
multiple arrays with fewer dimensions.  

• Dimensions - The size of the array in each dimension.  The ordering of  dimensions
in the M-API C and FORTRAN interfaces follows the conventions for these
languages:  the first dimension varies slowly in C and rapidly in FORTRAN.

In addition, the M-API supports several optional elements which can be used to
describe or document an array.  

• Array attributes - These are data which can be stored in the file as documentation
for the array.  Each attribute has a text name associated with one or more
numerical values or a text string.  Two frequently used attributes for text string data
are 'long_name' and 'units'.   

• Dimension attributes - These are identical to the array attributes, in function, but are
associated with an array dimension instead of an entire array.  Attributes and the
M-API routines for accessing them are discussed in Section 4.5, “Accessing
Metadata”.

• Data Groups - HDF allows data objects to be organized hierarchically within a file
by defining them as members of predefined data groups (‘Vgroups’).  The M-API
supports the definition of data groups, and arrays can be associated with data
groups at the time the array is created.  Currently no conventions have been
established for  the use of data groups for MODIS data products.

The M-API provides flexible access to arrays.  Once an array has been defined, the
entire array or any desired subset can be read or written during each access.  The text
name of an array is used to identify it.  Data may be written to the array and then
subsequently read back into memory, if desired.  HDF automatically fills any array
elements which are not written to.  (The default “fill value” is stored in a standard array
attribute “_FillValue” that may be retrieved or changed using M-API routines).

In addition, arrays from multiple files can be accessed concurrently (e.g., reading an
array from one file while writing to another).  The files are distinguished by use of the
M-API file handle variables (C structure or FORTRAN array) which the file opening
routine openMODISfile (OPMFIL) returns.

Table 4-1  shows the array Interface modules.  The specific M-API routines used for
array access are discussed in Section 4.3.  The syntax  of these routines is described
in detail in Appendix B-10.  Some examples of their use are given in Examples 1, 2,
2a, 4, and 5.



M-API User’s Guide, Version 2.1 SDST-064A

January 23, 1997 4-4

Table 4-1.  M-API Array Interface Modules

C FORTRAN Description

createMODISarray CRMAR Initializes an array structure in a file.

getMODISardims GMARDM Retrieves dimensions of an array structure.

putMODISarray PMAR Writes a subarray into an array structure.

getMODISarray GMAR Reads a subarray from an array structure.

putMODISarinfo PMARIN Writes an array attribute.

getMODISarinfo GMARIN Reads an array attribute.

putMODISdiminfo PMDMIN Writes an array dimension attribute.

getMODISdiminfo GMDMIN Reads an array dimension attribute.

putMODISdimname PMDNAM Writes a dimension name.

getMODISdimname GMDNAM Reads a dimension name.

4.3.2 Reading Arrays

Step 1a call getMODISardims (GMARDM) (optional)

Step 2 call getMODISarray (GMAR)

Use getMODISardims to retrieve the rank, dimensions, and data type of an array
prior to getting it.

Proper dimensioning of the variable dimsizes  (see Appendix D) to provide sufficient
elements for the dimensions of the array structure may at first appear to require
precognition.  The easiest solution is to provide a generous (32 element) dimsizes
array.  Another approach is to use the rank variable as an input containing the number
of elements in dimsizes.  If dimsizes is inadequate for the multi-dimensional array
structure in question, getMODISardims (GMARDM) will fail gracefully but will
return the rank of the array structure, allowing for the dimension information to be
retrieved with a second call.

4.3.3 Writing Arrays

Step 1a call createMODISarray (CRMAR)

Step 2 call putMODISarray (PMAR)

• Defines the array name with createMODISarray.  The array must be created
before it is possible to write data or attributes to it.  Arrays may be given names up



M-API User’s Guide, Version 2.1 SDST-064A

January 23, 1997 4-5

to 256 characters long and ranks up to 32 dimensions.  Once an array is created,
however, its name, data type, rank, and dimension length cannot be changed.

• Writes data to (all or any part of) the array with putMODISarray; given starting
indices inside the array and the dimensions (‘edges’) of the data to be written.
putMODISarray may be called multiple times to write (or overwrite) data into the
array.

The user must ensure that the rank, dimensions, and data type used to write the array
are consistent with the array definition.  To store a data “slab”, the initial write location
in the array and the length of each edge along each array dimension must be
identified to define the region of the array to be written to.  This is illustrated in Figure
4-1.  

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9 10 11

edge = {4, 6}

start = {2, 3}

Data Slab

Figure 4-1.  Writing Data into a Two-Dimensional Array

The argument start is an array specifying the location in the array where the first of the
data values will be written.  The start array must have a value for each dimension in
the SDS.  Each value must be smaller than its corresponding array dimension.  

The argument edge is an array specifying the length along each array dimension that
data values will be written to.  The edge array must have a positive value for each



M-API User’s Guide, Version 2.1 SDST-064A

January 23, 1997 4-6

dimension in the SDS.  The sum of each value in the edge array and the start array
must not exceed the corresponding array dimension.

The region to write the data is defined by the values in the start  and edge  arguments
to putMODISarray.  In the example illustrated above, the first elements in the data
buffer will be written into the array.

4.3.4 Array Attributes

Attributes and the M-API routines for accessing them are discussed in Section 4.5,
“Accessing Metadata”.  However, for completeness consider when one wishes to read
array attributes, or when one wants to create/modify attributes of existing arrays.         
M-API provides the following routines to aid the developer.

Two routines read attributes associated with an array:

Step 1a/2 call getMODISarinfo (GMARIN)

or call getMODISdiminfo (GMDMIN)

Two routines create or modify attributes associated with an array:

Step 1a/2 call putMODISarinfo (PMARIN)

or call putMODISdiminfo (PMDMIN)

4.4 ACCESSING TABLES (VDATA)

This section presents a discussion of M-API table structures.  The concept of the table
structure is explained, a general description of how a table structure is implemented in
an HDF file is provided and the M-API routines for accessing them are introduced.
Finally, there is a discussion of some problems that may be encountered when using
the M-API table routines to access HDF Vdata that were not made using M-API.

4.4.1 Introduction to Tables

Conceptually, a table is a set of one or more records, with each record having an
identical structure, and with annotation included to describe that record structure.
Each column of the table (or HDF ‘field’) is assigned one of the permitted M-API
number types (i.e., int16, float32,...) (see Table B-2 in Appendix B), and a text string
field name.  These field names and the data table name should be M-API-supplied
constants.  A table’s record structure may contain several varieties of number types, in
any order, and may be up to 32,767 bytes wide, but each record in the table has an
identical size and structure to the others.

M-API utilities use the HDF Vdata structure to store tables.  A Vdata provides the facility
to store a set of records, each identical in structure.  Each field in the record has a



M-API User’s Guide, Version 2.1 SDST-064A

January 23, 1997 4-7

unique text string name to identify it and may be of any standard number type, but has
a fixed length.  Vdata records are stored in a 'packed' format (i.e., there are no padding
or alignment bytes stored in the record).  A Vdata record is stored in precisely the
amount of memory required to hold the sum of its constituent fields.  As will be
discussed later, this can cause problems when a program’s data structure (which may
have padding or alignment bytes) is used to write data to or read data from a Vdata.

Each Vdata must have a text name and a text class.  The M-API identifies Vdata by
name and requires all Vdata it creates to be named.  The class name may be used to
group a set of tables into a 'class'.  M-API provides no direct means to search for a
Vdata by class name.

All Vdata records created with M-API are stored in contiguous memory in the HDF file.
This is the default HDF Vdata storage mode and it permits the M-API to append
additional records to an existing Vdata.  Therefore, all the data for a particular record
must be in contiguous memory in the I/O buffer (and packed, without any padding
bytes).  When reading table records, the data retrieved from a particular record will be
found packed in contiguous memory in the I/O buffer.

The M-API utilities provide the facility to create and read data table structures into
MODIS HDF files (see Table 4-2).  Creation of a table structure establishes it with an
immutable table name, class name, Vgroup location, field name for each column, and
record structure.  Data are written to a table structure by records and may be
overwritten.  Reading from a data table structure is more flexible.  A specific set of
fields from a specific contiguous set of records may be read with a single call.  Detailed
information about the individual M-API routines that perform these functions is
provided in Appendix B.

Table 4-2.   M-API Table Interface

C FORTRAN Description

createMODIStable CRMTBL Initializes a table structure in a file.

putMODIStable PMTBL Writes data records into a table structure.

getMODISfields GMFLDS Retrieves dimensions of a table structure.

getMODIStable GMTBL Reads data records from a table structure.

4.4.2 Reading Tables

Step 1a call getMODISfields (GMFLDS) (optional)

Step 2 call getMODIStable (GMTBL)



M-API User’s Guide, Version 2.1 SDST-064A

January 23, 1997 4-8

Prior to reading from a table structure it is recommended (but not required) that
getMODISfields (GMFLDS) be called to retrieve dimensional information about
the table structure.  This routine can provide the number of records in the table
structure, the number of fields in each record, and strings listing the field headers, their
data types, and the table structure's ‘class’, if any.  In C, the data-type and number of
records information may be used to dynamically allocate a retrieval buffer, as will be
shown in an example later in this section. getMODISfields output arguments for
which no information is desired may be set to NULL (this option is not available in
FORTRAN).

The M-API utility getMODIStable (GMTBL) provides more flexibility for data
retrieval than is permitted for data storage.  Data may be read from any set of
contiguous records with a single call.  In addition, it is not necessary to read out entire
records or to read out table structure fields in the order that they are stored in.  The
order that the desired fields are listed in the field name string input to
getMODIStable will be the order that the data are listed in the buffer for each record.
This will be demonstrated in an example later in this section.  The ability to read a
subset of record fields permits the addition or rearranging of fields in a new version of
the software that writes the table structure without requiring programs that read earlier
versions of the table to change their I/O, providing the fields of interest still exist in the
new table.  Matching the field name strings exactly to those stored in the table structure
is required to prevent the data retrieval from aborting.  Using M-API-supplied constants
helps prevent such failures from occurring.

4.4.3 Creating and Writing Tables

 Step 1a call createMODIStable (CRMTBL)

Step 2 call putMODIStable (PMTBL)

A MODIS HDF table structure is created using the createMODIStable (CRMTBL)
utility.  The file data structure (opened for writing or appending), a table name, the
number of fields in the table, a string of field headers, and a string of data type strings
are required inputs.  The table name is the ASCII string M-API utilities will use to identify
the table structure.  It must be unique in the file and should be a M-API-supplied
constant.  The string of field headers is a comma-delimited set of names for each field in
the order that the fields will appear in each record.  A three-field headers string might
look like “Header1,Header2,Header3”, for example.  Attention to the absence of spaces
and of character case in field header strings is essential, since these header names are
used to identify table fields.  The data type string is also a comma-delimited string
providing the number type for each field in order.  This might appear for two floats and
an integer field as “float32,float32,int16” (or ‘REAL*4,REAL*4,INTEGER*2’ in
FORTRAN).

Each field in a M-API table structure record contains a single numerical value or
character.  However, HDF Vdata may be created with record fields that are fixed-length
vectors.  The M-API does not support the creation of such multi-element fields, nor is it



M-API User’s Guide, Version 2.1 SDST-064A

January 23, 1997 4-9

possible to identify a field as multi-element with M-API. M-API is capable of reading and
writing records that contain multi-element fields.  Each record in the table structure must
still have identical structure and length, and each field must be of fixed length in every
record.

The class name field and data group name arguments of createMODIStable
(CRMTBL) are optional inputs.  The class name provides the option to identify the
table with a larger ‘class’ of data objects.  Providing a data group name places the new
table structure into a data group (HDF Vgroup); a ‘subdirectory’ of the MODIS HDF file
containing associated data objects.  Setting these parameters to NULL (or a string of
blanks in FORTRAN) rejects these options.

Writing data to a table structure using putMODIStable (PMTBL) requires
assembling the data to be stored (possibly of different types) into a buffer.  The data
must be ordered in the output buffer so that all data for each record is contiguous, and
is in the order of the fields assigned in createMODIStable (CRMTBL) like so:
{record0-field1,record0-field2,....record1-field1,record1-field2, etc.}.  The buffer must
contain an integral number of records to store with data for every field in each record.

The example programs (6, 7, and 8) shown in Section 6 demonstrate using the M-API
table utilities.  The first two programs create a new MODIS HDF file, create a table
structure to hold the  table shown below, and store in situ fabricated data in it.  The
next two programs then demonstrate how to read a record from this table structure.
Possible approaches are shown for handling buffers used to transfer data to and from
the table structure.

(A data group to place the table structure in would first have to be created using
createMODISgroup (CRMGRP)     before     creating the table structure.)  The header
string and the data type string define the name, size, and placement of each field in a
record.  See Example 2 for a simple case using C.

The putMODIStable (PMTBL) routine identifies the target table structure merely by
its name and the data group string set to NULL.  Note that a CHARACTER string set to
blank serves the same purpose in FORTRAN as the NULL does in C.

Calls to 'memcopy' are used in the C program to perform the same task as the
EQUIVALENCE statements in the FORTRAN77 example.  Another approach, using
pointers into the data buffer is demonstrated in the example code for putMODIStable in
the Section 6.

WARNING:  As natural as it might appear, a structure of two floats and an integer
    should        not    be used to write to this table.  C data structures may contain padding or
alignment bytes which would make the structure longer than the 12 byte length of each
Vdata record.  Worse, such padding is machine and compiler dependent, so even if
this problem could be corrected for structures on one platform, the solution probably
would not port to others.  If all the fields are the same data type, however, a contiguous
array of that data type could be used for the output buffer.



M-API User’s Guide, Version 2.1 SDST-064A

January 23, 1997 4-10

4.4.4 Potential Problems with One Record Vdata's

The M-API table routines are designed to work together to provide a consistent
interface to HDF Vdata.  Problems may arise, however, in so-called 'mixed-mode'
operations where a Vdata is accessed using both HDF and M-API routines.  In
particular, problems ranging from warning messages to outright loss of data may occur
when a Vdata with a single data record is written without putMODIStable (PMTBL)
and then subsequently accessed with M-API routines.  These problems may be
resolved in a future M-API version.

The following problems will only occur when a Vdata has a single record that      was        not   
written using M-API.  getMODIStable (GMTBL) will successfully read the record (or
any subset thereof), but will write a warning message that a 'dummy data record' was
read.  This warning is generated because the M-API has mistakenly identified the data
record with a 'dummy' record M-API produces when it first creates a table structure.
The record is not properly marked for the M-API to recognize it as real data.
getMODISfields (GMFLDS) suffers a similar problem in that it will report that there
are '0' data records in the table structure.  The erroneous action taken by
putMODIStable (PMTBL) in such circumstances is more serious.  Mis-identifying
the record as a dummy record, it will incorrectly     overwrite     the record if instructed to
append data to the table structure.

There are several ways to avoid these problems.  The most obvious is to use M-API
routines for all Vdata creations and writes or at least perform all data writes to the
Vdata with putMODIStable (PMTBL).  This may require a dummy record to be
written to a newly created Vdata, just as createMODIStable (CRMTBL) does.  The
problem also may be avoided by writing the    two     data records to the Vdata      without   
using M-API. M-API assumes that a table structure with more than one record no
longer has a dummy record and so will not attempt to overwrite it.

4.5 ACCESSING METADATA

4.5.1 Types of Metadata

ECS has defined metadata as "all descriptive information which will accompany ECS
standard data products" (ECS Core Metadata Standard, Release 2.0). The metadata
covers all aspects of production processing through the final archive of the data with
the GSFC DAAC.

ECS has identified the following set of metadata types:

• Processing-specific (e.g., the name of an input file),

• Quality Assurance (QA) related (e.g., statistical measures of product accuracy),

• Product-level (e.g., spatial bounds covering the product), and



M-API User’s Guide, Version 2.1 SDST-064A

January 23, 1997 4-11

• Inventory (e.g., ECS granule identifiers).

4.5.2 Metadata Processing in the ECS

The source of the metadata types described in Appendix B will be the production
processing, with inputs from both the science Product Generation Executive (PGE) and
the ECS process control system. The SDP Toolkit library routines will facilitate the
reception of metadata from these sources and their transfer to HDF files.  At the heart
of this implementation is the Metadata Configuration File (MCF), which stores values of
the types defined above using a syntax based on the PVL.  Table 4-3 defines the M-
API metadata interfaces.  The MCF tools will extract the metadata from the MCF, and
an additional routine will utilize ODL calls to parse the streams into objects.  The
library will also be capable of writing the metadata objects to the HDF file for final
archival in the DAAC.

Table 4-3.  M-API Metadata Interface

C FORTRAN Description

getMODISECSinfo GMECIN Get ECS metadata.

getMODISfileinfo GMFIN Get MODIS global file attribbute = value pairs.

putMODISfileinfo PMFIN Put MODIS global file attribbute = value pairs.

substrMODISECSinfo SMECIN Parse ECS metadata substrings.

completeMODISfile CPMFIL Write ECS metadata to file and close file.

4.5.3 Reading and Writing Metadata with M-API

Step 1a/2 call getMODISfileinfo (GMFIN)

      or call putMODISfileinfo (PMFIN)

      or call getMODISECSinfo (GMECIN)

The M-API routines support the metadata-handling concepts developed by ECS as
part of theSDP. M-API provides the capability to write granule-level metadata to HDF
files as a set of global attributes. The M-API routine completeMODISfile (CPMFIL)
will write the ECS metadata for a newly created HDF file, at the time the file is closed.
The M-API routine putMODISfileinfo (PMFIN) will write a global attribute and its
value to the MODIS HDF file, while getMODISfileinfo (GMFIN) will read a global
attribute and its value from the file.



M-API User’s Guide, Version 2.1 SDST-064A

January 23, 1997 4-12

The required global metadata parameters for MODIS HDF files are described in "ECS
Metadata Syntax: Granules." Items that are written for a particular L2 product should
be read from a L1B file with one or more calls to getMODISECSinfo (GMECIN)
and written using the SDP Toolkit met routines.  Items that vary with the granule and
require scientist input will be generated by the code and will be written with SDP
Toolkit calls to include processing-specific information during ECS production.

4.6 Miscellaneous

This section contains the miscellaneous routines and rounds out our discussion of the
M-API library.  Several of these programs are used generically throughout the
underlying M-API library but are deemed to be useful for a general developer.  See
Table 4-4 for the Miscellaneous M-API Functions.

The routines openMODISfile(OPMFIL) and closeMODISfile (CLMFIL) are the
definitive functions required for opening and closing files accessed by M-API.  The
routine completeMODISfile (CPMFIL) is designed to be used solely for finishing
off (and closing) newly (M-API) created files.

Table 4-4.  Miscellaneous M-API Functions

C FORTRAN Description

MODISsizeof MSIZE Returns the number of bytes associated
with the character string names of each of
the permitted data types

openMODISfile OPMFIL Open the MODIS file.

closeMODISfile CLMFIL Close the MODIS file.

completeMODISfile CPMFIL Complete (and close) the MODIS file.

NOTE: completeMODISfile (CPMFIL) has a diferent calling sequence in M-API
2.1 from previous versions.

Make frequent use of the general M-API utility MODISsizeof (MSIZE).  It behaves
similar to the C ‘sizeof’ macro.  It returns the number of bytes associated with the
character string names of each of the permitted data types.  If a comma-delimited string
of number types is given to it as an argument (such as might be provided by calling
getMODISfields [GMFLDS]) it will return the total number of bytes the string
represents, so that MODISsizeof (MSIZE) (“int32,float32,int16”) would return 10, for
example.  This is a useful routine to help dynamically allocate memory for reading in
data, if necessary.



M-API User’s Guide, Version 2.1 SDST-064A

January 23, 1997 5-1

5. M-API-SUPPLIED CONSTANTS, NAMING CONVENTIONS, AND
DESCRIPTIONS

As was mentioned in Section 4,  all data objects are referenced by string names that
uniquely identify that object.  A set of M-API-global constants is supplied in the mapi.h
include file as macros for C routines and in the mapi.inc include file as PARAMETER
set values for FORTRAN routines.  The mapi.h file also contains prototypes for M-API
utilities and structure declarations.  It is essential that any module calling M-API utilities
include mapi.h or mapi.inc.  Providing and managing these name constants is an
essential ingredient of M-API.  In addition to the mapi include files, product specific
include files have also been written.  These include files define the different  product
specific M-API constants, described in this section.  The names of these include files
are listied in Table 5-1.  Appendix B lists either the metadata description or the
metadata name and the corresponding M-API constant.  

Table 5-1.  M-API -Supplied Product Specific Include Files

C FORTRAN Group Name Table

mapi.h mapi.inc global  values B-1 through B-3

mapiL1A.h mapiL1A.inc Level 1A B-4

mapiL1Bgeo.h mapiL1Bgeo.inc Level 1B
/Geolocation

B-5

mapiatmos.h mapiatmos.inc Atmosphere B-6

mapiland.h mapiland.inc Land B-7

mapiocean.h Oceans B-8

5.1 Data Type Constants

Data type constants are provided to label the data type of data contained in a data
object.  They are acceptable inputs for the data_type parameter of
createMODISarray (CRMAR) and createMODIStable (CRMTBL).  They may
be used as inputs to the MODISsizeof (MSIZE) routine, which returns the number
of bytes of memory required to store the data type.

The M-API constants for describing data types are listed in Table 5-2.  These are the
only data types recognized by M-API.  The constant column identifies the ‘macro’ or
‘symbolic constant’ provided by the respective C and FORTRAN M-API include files.
The constant names are identical for both languages, but the actual string represented
is different for each language to be more closely associated with the specific
language’s nomenclature.  These are the only M-API-supplied constants that have
different content for different languages.



M-API User’s Guide, Version 2.1 SDST-064A

January 23, 1997 5-2

Table 5-2.  M-API Data Type Constants

Constant C FORTRAN

I8 “int8” ‘INTEGER*1’

I16 “int16” ‘INTEGER*2’

I32 “long int” ‘INTEGER*4’

I64 “int64” ‘INTEGER*8’

R32 “float32” ‘REAL*4’

R64 “float64” ‘REAL*8’

TXT “char *” ‘CHARACTER*(*)’

UI8 “unint8” ‘UINTEGER*1’

UI16 “unint16” ‘UINTEGER*2’

UI32 “unint32” ‘UINTEGER*4’

UI64 “unint64”

5.2 Metadata Constants

Metadata are descriptive information about a MODIS data product which are included
with the data product.  In MODIS HDF files these are stored in a keyword = value
format where the keyword is an identifying string used to label and locate the value
information.  Additional information about the metadata that are found in MODIS HDF
files may be found in Section 6: Accessing Metadata.

The M-API provides constants for all specified MODIS metadata    labels    .  These are
listed in Appendix B,  as product specific include files. In addition, some metadata may
take on only a small domain of valid values.  M-API also supplies constants for these
small sets of metadata values.

5.3 Data Object Constants

Every data object in a MODIS HDF file, array structure, table structure, and data group,
must have an ASCII string name.  In addition, these data objects will have additional
annotations associated with them.  Some array structures will have dimensions with
labels.  A table structure must have a ‘field’ name for each column and may have a
class name.  A data group may also have a class name.  All of these name strings
must be available on a global basis so that  all the routines may use them in searches.



M-API User’s Guide, Version 2.1 SDST-064A

January 23, 1997 5-3

All specified MODIS data objects and their associated annotations are available as
constants in the M-API include file.  These are all listed in Appendix B, as product
specific include files. (Note: Refer to Section 1.7  for more specific information).
Annotations specific to a data object are listed (both in the appendix and in the include
files) together with the data object constant, but many annotations (e.g., #define
HTINM “Height [meters]”) are more generic.

5.4 MODIS File Definitions

For a file to be a useful vehicle for transferring information between processes, its
expected content and structure must be known by each party.  Even in a MODIS HDF
file, with its ‘self-describing’ data objects, a link has to be made between the
abstraction of the name of an object, what the general structure of that object is, and
the information content provided by the object.  Documenting and disseminating a
file’s content and structure provides an agreed-upon file definition that is required for
proper software development and maintainance of the interface between processes
accessing the file.

A set of MODIS file definitions are maintained by the MODIS SDST team under
configuration control.  These are MODIS Data Product File Definition forms, describing
the content and structure of the file in sufficient detail to allow easy access to its
contents using the M-API (and other) utilities.  There is a file definition for every MODIS
data product.  The file definitions and the conventions they define are an integral part
of the M-API.  Examples of file definitions can be found in Appendix F.

5.5 Structure of MODIS Data Product File Definition Forms

The following pages show an example of a MODIS data product file and the
associated MODIS Data Product File Definition form describing that file.  Figure 5-1 is
a conceptualization of the file’s contents.  This file has seven array structure SDSs
and a table structure (Vdata) called Geolocation, all assigned to a single data group
(Vdata) called Geophysical Data.  The file also contains the standard MODIS data
product metadata.  The structure and character of these data objects and their
attributes (such as label and table field names) are described in the MODIS Data
Product File Definition form.

A MODIS Data Product File Definition form is composed from a set of four file definition
elements: a header file definition form, an SDS definition form, a Vdata definition form,
and a Vgroup definition form.  Templates for the file definition elements are included in
Appendix F, File Definition Templates.  Every MODIS Data Product File Definition form
begins with a header file definition.  The other elements are included as needed to
describe the specific data objects in the file.

The structure of a MODIS Data Product File definition form is generally hierarchical, or
resembling an outline.  The header element of the form describes the general content
of the file.  It is followed by the other elements describing the major data objects



M-API User’s Guide, Version 2.1 SDST-064A

January 23, 1997 5-4

contained in the file.  Vgroup definition forms are followed by the element forms for the
data objects inserted into the data group it describes.  Each of the other element forms
in turn describes the content of a data object, its structure and its associated attributes
(such as dimension labels and table headers).  Note that the order that data objects
are described in on a MODIS Data Product File definition form has no implication for
the actual placement of data objects in the file itself.  Knowing where data are located
on a MODIS HDF file is not necessary.  The M-API, taking advantage of HDF, can
locate an object in a MODIS HDF file if only its name and object type (e.g., array or
table) are known.

Geophysical Data

-  nLw_412
-  nLw_443
-  nLw_490
-  nLw-530
-  nLw-550
-  nLw_670
-  nLw_681

Geolocation

nLw_681

1354
frames @ 1km res.

100 scans/granule
x 10 detectors/scan
= 1000 detectors

nLw_670
nLw_550
nLw_530
nLw_490

nLw_443
nLw_412

Legend

Table

Data group

Metadata

-  nLw_670
-  nLw_681 Array

Figure 5-1.  Sample Oceans (MOD18) HDF File Specification

All levels of a MODIS Data Product File definition share some of the same or similar
information fields.  The name of a data object is the most important.  This character
string is stored with the data object and is the key to M-API utility data object searches.
Each form element has a description field.  This is a sentence or two describing the



M-API User’s Guide, Version 2.1 SDST-064A

January 23, 1997 5-5

contents of a data object.  The occurrence field provides for some flexibility in the
structure of a MODIS HDF file.  Some objects may not always occur in a particular
MODIS Data Product File.  Perhaps an array of data is pertinent only for daylight
observations or a field in a table applicable only on a seasonal basis.  The occurrence
field will document under what circumstances a certain data object will or will not
appear in the file.  Each data element also has a contents field or fields.  For the file
itself and for Vgroups this is called ‘Contents’ and is simply a list of the objects that
may occur therein.

A MODIS Data Product File definition also includes information about the subject file’s
metadata content.  The header element includes a listing of all metadata labels that
may occur in the file.  The metadata ‘Name’ is the character string label that may be
used in the M-API utility getMODISfileinfo (GMFIN) to retrieve metadata values or
contents.  If the metadata are not ‘Always’ present,  the conditions of their presence or
absence are provided in the Occurrence Column (examples of MODIS Data Product
File definitions are shown in Appendix F).

5.6  Maintenance and Location of the product specific M-API include files

When M-API is delivered, the current versions of the include files are included.  In
addition, these include files can also be found in the ftp site:
/projects/modis/util/modis_api/mapiheader and in: /cm/tools/src/MAPI2.0/h.

In addition, a file (mapi_include.status) is maintained in these directories.  Every
attempt is made to keep the files at these locations as up-to-date as possible.
However, the information contained in these files is gleaned from the HDF file
specifications, thus when a file specification changes or one is  added, the respective
include file must be updated.  

The macros contained in the file are never changed, only the metadata that it is
associated with the macro is changed; though new macros may be added.  Therefore
it is crucial that the macro are used in place of the hard-coded metadata names.  If  a
metadata name is changed, all places where it was hard-coded in the program will
have to be changed,  making sure that every occurrence is changed.  On the other
hand, if a macro is used then only the include file would have to be changed.

In the include file’s prologue is a list of the file specifications that  pertain to the include
file.  The file specification name, version, and revision date are listed.  The beginning
section contains common metadata that is used for all the products for that specific file.
The rest of the file is divided into  sections by product.  



M-API User’s Guide, Version 2.1 SDST-064A

January 23, 1997 5-6

(This page intentionally left blank.)


